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Agenda 

January 29, 2021 

 8:50      Welcome 

Moderator: Harel Shouval 
University of Texas Health Science Center at Houston 

 9:00  Theory of Neural Perturbome 
Claudia Clopath, Imperial College London 

10:00  Pushing the Limits of Intracortical Neural Recording 
Chong Xie, Rice University 

10:30 Break 

Moderator: Krešo Josić 
University of Houston 

10:45 Can Deep Neural Networks Model the Human Faculty of Abstraction? 
Cameron Buckner, University of Houston 

11:15 Neurally Plausible Mechanisms for Learning Selective and Invariant Representations 
Fabio Anselmi, Baylor College of Medicine 

Moderator: Fabrizio Gabbiani 
Baylor College of Medicine 

11:45 Trainee Short Talks 

Balanced Networks Under Spike-Time Dependent Plasticity 
Alan Akil, Graduate Student, University of Houston  

Normative Adaptive Decision Rules in Static Environments 
Nicholas Barendregt, Graduate Student, University  of Colorado Boulder 

Inference as Control 
Lokesh Boominathan, Graduate Student, Rice University 

Spike-Constrained Neural Control 
Itzel  Olivos-Castillo,  Graduate Student, Rice University 

Behavioral Time Scale Plasticity of Place Fields: Mathematical Analysis 
Ian Cone, Graduate Student, Rice University  

Normative Decision Asymmetries with Symmetric Priors but Asymmetric Evidence 
Tahra Eissa, University of Colorado Boulder, Research Associate 

Learning Accurate Path Integration in a Ring Attractor Model for Heading in Drosophila 
Pantelis Vafidis, Student, California Institute of Technology 

12:30 Lunch Break 



Agenda 
 
 
Moderator:  Fabrizio Gabbiani 

Baylor College of Medicine 
 
1:45 Quantifying Uncertainty in Spikes Estimated from Calcium Imaging Data 

Daniela Witten, University of Washington, Seattle 
 

Moderator:  Xaq Pitkow 
Baylor College of Medicine/Rice University 
  

2:45 Large Scale Brain Mapping 
 Bobby Kasthuri, University of Chicago   
 
3:45 Networking Break 
 
Moderator:  Xaq Pitkow 

Baylor College of Medicine/Rice University 
 
4:10 On the Rational Boundedness of Cognitive Control  

Jonathan Cohen, Princeton University  
 
5:00 Closing Remarks  



Fabio is an assistant professor at the Center for Neuroscience and Artificial

Intelligence at Baylor College of Medicine where he has been faculty member since

2020. He is also affiliated to the Centre for Brains Minds and Machines at MIT.

Fabio completed his PhD in quantum mechanics at Hertforshire University (Uk) and he

graduated in Physics at Padova University in Italy.

His work lies at the interface between computational neuroscience and machine

learning with focus on development of biologically grounded machine learning

algorithms with application to visual cortex.

Coding for visual stimuli in the ventral stream is known to be invariant to object identity

preserving nuisance transformations. Indeed, much recent theoretical and

experimental work suggests that the main challenge for the visual cortex is to build up

such nuisance invariant representations. Recently, artificial convolutional networks

have succeeded in both learning such invariant properties and, surprisingly, predicting

cortical responses in macaque and mouse visual cortex with unprecedented accuracy.

However, some of the key ingredients that enable such success—supervised learning

and the backpropagation algorithm—are neurally implausible. This makes it difficult to

relate advances in understanding convolutional networks to the brain. In contrast,

many of the existing neurally plausible theories of invariant representations in the brain

involve unsupervised learning, and have been strongly tied to specific plasticity rules.

To close this gap, we study an instantiation of simple-complex cell model and show, for

a broad class of unsupervised learning rules (including Hebbian learning), that we can

learn object representations that are invariant to nuisance transformations belonging to

a finite orthogonal group. These findings may have implications for developing neurally

plausible theories and models of how the visual cortex or artificial neural networks

build selectivity for discriminating objects and invariance to real-world nuisance

transformations.

Fabio Anselmi, PhD 

Assistant Professor

Center for Neuroscience and Artificial Intelligence
Neurally Plausible Mechanisms for Learning Selective and Invariant 
Representations

Baylor College of Medicine

Speakers, in alphabetical order



Cameron Buckner is an Associate Professor in the Department of Philosophy at the
University of Houston. He began his academic career in logic-based artificial
intelligence. This research inspired an interest into the relationship between classical
models of reasoning and the (usually very different) ways that humans and animals
actually solve problems, which led him to the discipline of philosophy. He received a
PhD in Philosophy at Indiana University in 2011 and an Alexander von Humboldt
Postdoctoral Fellowship at Ruhr-University Bochum from 2011 to 2013. His research
interests lie at the intersection of philosophy of mind, philosophy of science, animal
cognition, and artificial intelligence, and he teaches classes on all these topics. Recent
representative publications include “Empiricism without Magic: Transformational
Abstraction in Deep Convolutional Neural Networks” (2018, Synthese), and “Rational
Inference: The Lowest Bounds” (2017, Philosophy and Phenomenological
Research)—the latter of which won the American Philosophical Association's Article
Prize for the period of 2016–2018. He is currently writing a book about the philosophy
of deep learning (on support from the National Science Foundation).

Abstract: Recently, deep neural networks have accomplished feats that skeptics
thought would remain beyond the reach of artificial intelligence for many more years.
In evaluating these achievements, one question which has been a topic of stark
disagreement—but curiously not yet much explicit debate—is whether these networks
can model the human faculty of abstraction. Skeptics have argued that as impressive
as these achievements are, these networks’ solutions are fundamentally unlike the
strategies that humans use to solve these problems, because deep neural networks
are unable to discover and manipulate human abstractions. At the same time, many
machine learning researchers take it as obvious that deep neural networks’ distinctive
computational strength lies in their ability to perform a hierarchical form of abstraction,
which influential neuroscientists have argued is similar to processes of abstraction
performed in primate perceptual cortex. In this talk, I argue that empiricist philosophy
of mind can help illuminate this debate. Abstraction has long played a key role in
empiricist philosophy of mind, and over the millenia philosophers have distinguished

Cameron Buckner, PhD 
Associate Professor
Philosophy
Can Deep Neural Networks Model the Human Faculty of 
Abstraction?

University of Houston



several qualitatively different forms of abstraction. I explain four forms in this
talk—abstraction-as-composition, abstraction-as-subtraction, abstraction-as-
representation, and abstraction-as-invariance—and discuss ways that deep neural
networks may or may not be said to implement them. I conclude by suggesting
that deep neural networks may in some ways transcend the limits of human
abstraction, which intersects with pressing questions over the desirability of
transparency and trustworthiness in scientific applications of deep learning.



Professor Claudia Clopath is based in the Bioengineering Department at Imperial
College London. She is heading the Computational Neuroscience Laboratory.

Her research interests are in the field of neuroscience, especially insofar as it
addresses the questions of learning and memory. She uses mathematical and
computational tools to model synaptic plasticity, and to study its functional implications
in artificial neural networks.

Professor Clopath holds an MSc in Physics from the EPFL and did her PhD in
Computer Science under Wulfram Gerstner. Before joining Imperial College, she did
postdoctoral fellowships in neuroscience with Nicolas Brunel at Paris Descartes and in
the Center for Theoretical Neuroscience at Columbia University. She published highly
cited articles in top journals such as Science and Nature, has given dozens of invited
talks and keynotes around the world, and received various prizes such as the Google
Faculty Award in 2015.

Abstract: To unravel the functional properties of the brain, we need to untangle how
neurons interact with each other and coordinate in large-scale recurrent networks. One
way to address this question is to measure the functional influence of individual
neurons on each other by perturbing them in vivo. Application of such single-neuron
perturbations in mouse visual cortex has recently revealed feature-specific
suppression between excitatory neurons, despite the presence of highly specific
excitatory connectivity, which was deemed to underlie feature-specific amplification.
Here, we studied which connectivity profiles are consistent with these seemingly
contradictory observations, by modeling the effect of single-neuron perturbations in
large-scale neuronal networks. Our numerical simulations and mathematical analysis
revealed that, contrary to the prima facie assumption, neither inhibition dominance nor
broad inhibition alone were sufficient to explain the experimental findings; instead,
strong and functionally specific excitatory–inhibitory connectivity was necessary,

Claudia Clopath, PhD 
Professor
Bioengineering
Theory of Neural Perturbome

Imperial College London



consistent with recent findings in the primary visual cortex of rodents. Such
networks had a higher capacity to encode and decode natural images, and this
was accompanied by the emergence of response gain nonlinearities at the
population level. Our study provides a general computational framework to
investigate how single-neuron perturbations are linked to cortical connectivity and
sensory coding and paves the road to map the perturbome of neuronal networks
in future studies.



Professor Jonathan Cohen’s research focuses on the neural mechanisms underlying
cognitive control, and their relationship to the human capacity for general intelligence.
Cognitive control is the ability to guide attention, thought and action in accord with
goals or intentions. One of the fundamental mysteries of neuroscience is how this
capacity for coordinated, purposeful, and flexible behavior arises from the distributed
activity of many billions of neurons in the brain. Several decades of cognitive and
neuroscientific research have focused on the mechanisms by which control influences
processing (e.g., attentional effects in sensory processing, goal directed sequencing of
motor output, etc.), and the brain structures upon which these functions depend.
However, we still have a poor understanding of how these systems give rise to
cognitive control and intelligence. Our work seeks to develop formally rigorous,
mechanistically explicit hypotheses about the functioning of these systems, and to test
these hypotheses in empirical studies.

Understanding how the human brain gives rise to the remarkable flexibility of the
human mind is one of the greatest challenges in science, and work in our laboratory is
leveraging the convergence of research in neuroscience, psychology, and computer
science that is addressing this challenge. Progress in this area promises both to
deepen our understanding of how the human brain gives rise to the mind, and to serve
as the foundation for long sought rational approaches to the treatment of
neuropsychiatric disorders, as well as the design of machines that can interact more
naturally and productively with humans.

Professor Cohen holds a B.A. in Biology and Philosophy from Yale University, an M.D.
from University of Pennsylvania, and a Ph.D. in Cognitive Psychology from Carnegie
Mellon University. He joined the Princeton faculty in 1998. He has been conferred the
highest awards for research in psychology, including the American Psychological
Association’s Distinguished Scientific Contribution Award and the William James
Fellow Award from the Association for Psychological Science.

Abstract: The capacity for cognitive control, while one of the defining characteristics of

Jonathan Cohen, PhD 
Professor
On the Rational Boundedness of Cognitive Control

Princeton University



human cognition, is also remarkably limited. Typically, people cannot engage in more
than a few — and sometimes only a single — control-demanding task at once. Limited
capacity was a defining element in the earliest conceptualizations of cognitive control, it
remains one of the most widely accepted axioms of cognitive psychology, and is even the
basis for some laws (e.g., against the use of mobile devices while driving). Remarkably,
however, the source of this limitation remains a mystery. Structural and/or metabolic
constraints are commonly, if tacitly, assumed sources. However, these seem unlikely.
Cognitive control is known to rely on the function of a part of the brain — the prefrontal
cortex — that comprises approximately one third of the neocortex and some 30 billion
neurons. It seems unlikely that this poses a structural limitation. Metabolic constraints are
equally unlikely. Other functions, such as vision, routinely engage widespread regions of
neocortex in an intense and sustained manner. In this talk, I will present an alternative
account, that strives to provide a normative explanation for the capacity constraints on
cognitive control. This suggests that constraints reflect a fundamental tradeoff in network
architectures between the efficacy of learning (generalization) and the efficiency of
processing (multitasking). I will describe simulation studies and empirical findings in
support of this idea, and discuss its broader implications for both cognitive science and
machine intelligence.



Dr. Kasthuri is the first Neuroscience Researcher at Argonne National Labs
and an Assistant Professor in the Dept. of Neurobiology, University of
Chicago. He has an MD from Washington University School of Medicine and
a D.Phil. from Oxford University where he studied as a Rhodes scholar. As a
post-doctoral fellow, Dr. Kasthuri developed an automated approach to large
volume serial electron microscopy (‘connectomics’). Currently, the Kasthuri
lab continues to innovate new approaches to brain mapping including the use
of high-energy x-rays from synchrotron sources for mapping brains in their
entirety. The Kasthuri lab is applying these techniques to in service of
answering the question: how do brains grow up, age, and degenerate?

Abstract: The Kasthuri lab at the University of Chicago and Argonne National
Laboratory is pioneering new techniques for brain mapping of the fine
structure of the nervous system at industrial scale. I will describe these
developments including: large volume automated electron microscopy for
mapping neuronal connections at the nanoscale, synchrotron source X-ray
microscopy for mapping the cellular composition of entire brains, and
combining both with genetic cell type specific labeling for multi-scale, multi-
modal brain maps. We have applied these tools to brains from octopuses
and squids to primates and mice in the service of answering the questions:
how do brains grow up and age and how do brains differ across individuals,
phylogeny, and disease.

Narayanan 'Bobby' Kasthuri, MD
Assistant Professor
Neurobiology
Large Scale Brain Mapping

University of Chicago



Daniela Witten is a professor of Statistics and Biostatistics at University of Washington,
and the Dorothy Gilford Endowed Chair in Mathematical Statistics. She develops
statistical machine learning methods for high-dimensional data, with a focus on
unsupervised learning.

Daniela is the recipient of an NIH Director's Early Independence Award, a Sloan
Research Fellowship, an NSF CAREER Award, a Simons Investigator Award in
Mathematical Modeling of Living Systems, a David Byar Award, a Gertrude Cox
Scholarship, and an NDSEG Research Fellowship. She is also the recipient of the
Spiegelman Award from the American Public Health Association for a statistician under
age 40 who has made outstanding contributions to statistics for public health, as well
as the Leo Breiman Award for contributions to the field of statistical machine learning.
She is a Fellow of the American Statistical Association, and an Elected Member of the
International Statistical Institute.

Daniela’s work has been featured in the popular media: among other forums, in Forbes
Magazine (three times) and Elle Magazine, on KUOW radio (Seattle's local NPR
affiliate station), in a NOVA documentary, and as a PopTech Science Fellow.

Daniela is a co-author (with Gareth James, Trevor Hastie, and Rob Tibshirani) of the
very popular textbook "Introduction to Statistical Learning". She was a member of the
National Academy of Medicine (formerly the Institute of Medicine) committee that
released the report "Evolution of Translational Omics".

Daniela completed a BS in Math and Biology with Honors and Distinction at Stanford
University in 2005, and a PhD in Statistics at Stanford University in 2010.

Daniela’s abbreviated CV is available here. Her full CV is available upon request.

Abstract: abstract: In recent years, a number of algorithms have been developed to
estimate spike times on the basis of calcium imaging data.

Daniela Witten, PhD 
Professor
Statistics
Quantifying Uncertainty in Spikes Estimated from Calcium Imaging 
Data

University of Washington
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In this talk, I will ask a question that arises naturally in applying these
algorithms: how can we quantify uncertainty associated with the estimated
spikes? I will present a selective inference framework that allows us to compute
a p-value associated with each estimated spike. The key idea is that instead of
asking the question "what is the probability of seeing such a large increase in
fluorescence if there isn't really a spike at this position?", we must instead ask
the question "what is the probability of seeing such a large increase in
fluorescence if there isn't really a spike at this position, given that we estimated
a spike?"

This is joint work with my current PhD student Yiqun Chen and PhD alum Sean
Jewell.



Dr. Chong Xie received his BS degree in Physics from the University of Science and
Technology of China in 2004, and Ph.D. degree in Materials Science and Engineering
from Stanford University in 2011. He did his postdoctoral work at Harvard University in
2011-2014. Before joining Rice ECE, he was an assistant professor of the Department
of Bioengineering at University of Texas at Austin in 2014-2019. Dr. Xie’s laboratory is
primarily interested in applying specially designed functional devices to solve key
challenges in fundamental and clinical neuroscience.

Abstract: The brain is a massively-interconnected and constantly-evolving network of
specialized circuits, a systematic understanding of which requires an interface that
functions at diverse spatial and temporal scales. Implanted electrodes provide a
unique approach to decipher brain circuitry by allowing for time-resolved electrical
detection of individual neuron activity. However, scalable and stable neural recording
that can track and map a large ensemble of neurons across days, weeks and months
remains challenging. We recently demonstrated that ultraflexible, cellular-dimensioned
neural electrodes afford seamless integration with brain tissue and stable recording of
individual neurons for over a year. Building upon this platform, I will also present our
recent progress in further decreasing their form factors, and their massive scaling-up of
channel count and density in behaving animals. I will finally discuss about our on-going
efforts in applying these ultraflexible electrodes in fundamental and translational
neurosciences.

Faculty Website

Chong Xie, PhD 
Associate Professor
Electrical and Computer Engineering and 
Neuroengineering
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Rice University
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Balanced Networks Under Spike-Time Dependent Plasticity 

Akil A1, Rosenbaum R2, Josić, K1

1. Department of Mathematics, University of Houston
2. Department of Computational and Applied Mathematics and Statistics, University of Notre Dame

Corresponding author: Krešimir Josić, Department of Mathematics, University of Houston, 3551 Cullen 
Blvd, Houston, TX, josic@math.uh.edu; 

The dynamics of local cortical networks are irregular, but correlated. Dynamic excitatory–inhibitory 
balance is a plausible mechanism that generates such irregular activity, but it remains unclear how balance 
is achieved and maintained in plastic neural networks. In particular, it is not fully understood how plasticity 
induced changes in the network affect balance, and in turn, how correlated, balanced activity impacts 
learning. How does the dynamics of balanced networks change under different plasticity rules? How does 
correlated spiking activity in recurrent networks change the evolution of weights, their eventual magnitude, 
and structure across the network? To address these questions, we develop a general theory of plasticity in 
balanced networks. We show that balance can be attained and maintained under plasticity induced weight 
changes. We find that correlations in the input mildly, but significantly affect the evolution of synaptic 
weights. Under certain plasticity rules, we find an emergence of correlations between firing rates and 
synaptic weights. Under these rules, synaptic weights converge to a stable manifold in weight space with 
their final configuration dependent on the initial state of the network. Lastly, we show that our framework 
can also describe the dynamics of plastic balanced networks when subsets of neurons receive targeted 
optogenetic input. 

Trainee Short Talk Abstracts



Normative Adaptive Decision Rules in Static Environments 

Barendregt NW1, Gold JI2, Josić K3, Kilpatrick ZP1 

1. Department of Applied Mathematics, University of Colorado Boulder
2. Department of Neuroscience, University of Pennsylvania
3. Department of Mathematics, University of Houston

Corresponding author: Nicholas W. Barendregt, Department of Applied Mathematics, University of 
Colorado Boulder, Engineering Center, ECOT 225, 526 UCB, Boulder, Colorado, 
nicholas.barendregt@colorado.edu  

Normative decision-making often requires adaptive forms of evidence accumulation, but less is known 
about the decision rules needed to achieve optimal performance under these conditions. For example, a 
foraging animal must account for an uncertain and depleting food yield when deciding whether to leave 
their current territory. Even in static environments, task constraints and structure (e.g., time) can affect how 
evidence is interpreted during a task, which can lead to adaptive decision rules. Recent interest in studying 
adaptive decision rules has resulted in several phenomenological models, such as the “urgency-gating 
model” (UGM), that use collapsing decision thresholds to explain subject behavior in psychophysics 
experiments. However, we currently lack a general, normative account of adaptive decision rules and their 
relevance to human decision-making. 

Here we show that normative decision-making even in relatively simple, static two-choice tasks involves a 
broad range of decision-bound dynamics that include non-monotonic forms of urgency. We use dynamic 
programming to find dynamic bounds used by a normative observer who optimizes their expected reward 
rate based on knowledge of task parameters. We then validate the model, including its predictions of non-
monotonic urgency, using human subject data from a “tokens task”, in which the latent parameters of the 
task are static but evidence quality fluctuates with evidence history. Adaptive, non-monotonic decision 
bounds underlie the optimal decision policy across broad regions of task parameter space, expanding the 
definition of decision urgency and suggesting future task paradigms for discriminating subject decision 
strategies. We thus show that it is just as important to consider the role of potentially complex decision 
criteria when evaluating subject decision strategies as it is to model evidence accumulation. 



Inference as Control 

Boominathan L1, Schrater P2, Xaq Pitkow X3,4 

1. Department of Electrical and Computer Engineering, Rice University
2. Department of Psychology and Computer Science, University of Minnesota
3. Department of Neuroscience, Baylor College of Medicine
4. Department of Electrical and Computer Engineering, Rice University

Corresponding author: Lokesh Boominathan, Department of Electrical and Computer Engineering, Rice 
University, 6100 Main Street, Houston, Texas, E-mail: lb36@rice.edu 

A critical computation for the brain is to infer the world's latent variables from ambiguous observations. 
Computational constraints, including metabolic costs and noisy signals, limit the performance of these 
inferences. Efficient coding is a prominent theory that describes how limited resources can be used best. In 
one incarnation, this leads to the theory of predictive coding, which posits that predictions are sent along 
feedback channels to be subtracted from signals at lower cortical areas; only the difference returns to the 
higher areas along feedforward channels, reducing the cost of sending redundant signals already known to 
the higher areas. This theory does not, however, account for the costs or noise associated with the feedback. 
Depending on the costs for sending predictions and the reliability of signals encoding those predictions, we 
expect different optimal strategies to perform computationally constrained inferences. For example, if the 
feedback channel is too unreliable and expensive, we hypothesize that it is not worth sending any 
predictions at all. Here we offer a more general theory of inference that accounts for the costs and 
reliabilities of the feedback and feedforward channels, and the relative importance of good inferences about 
the latent world state. We formulate the inference problem as control via message-passing on a graph, 
maximizing how well an inference tracks a target state while minimizing the message costs. Messages 
become actions with their own costs to reduce while improving how well an inference tracks a target state. 
We solve this problem under Linear-Quadratic-Gaussian (LQG) assumptions: Linear dynamics and 
transformations, Quadratic state and control message costs, and Gaussian noise for the process, 
observations, and measurements. Our theory enables us to determine the optimal predictions and how are 
they are integrated into computationally constrained inference. 



Behavioral Time Scale Plasticity of Place Fields: Mathematical Analysis 

Cone I,1,2 Shouval H1 

1. Department of Neurobiology and Anatomy, University of Texas Medical School at Houston,
Houston, TX, USA
2. Applied Physics Program, Rice University, Houston, TX, USA

Traditional synaptic plasticity experiments and models depend on tight temporal correlations 
between pre- and postsynaptic activity. These tight temporal correlations, on the order of tens of 
milliseconds, are incompatible with significantly longer behavioral time scales, and as such might 
not be able to account for plasticity induced by behavior.   

Indeed, recent findings in hippocampus suggest that rapid, bidirectional synaptic plasticity which 
modifies place fields in CA1 operates at behavioral time scales. In these experiments1-3, place-field 
plasticity is shown to occur rapidly in response to either naturally occurring or artificially induced 
dendritic calcium spikes, also known as "plateau potentials". These protocols demonstrate both an 
increase and a decrease in synaptic efficacies occurring in synapses that were active seconds before 
or after the plateau potentials. This plasticity, coined "behavioral timescale synaptic plasticity" 
(BTSP), is therefore unable to be reconciled with forms of synaptic plasticity that depend on tight 
correlations between pre and postsynaptic activity. 

The phenomenon of BTSP may depend on synaptic “eligibility traces”, both for LTP and LTD.  
Activated by neural activity, eligibility traces act as a marker or “tag” at specific synapses, and can 
last on the order of seconds. These traces can then be converted to changes in synaptic efficacies 
by the activation of some sort of reward or instructive signal. A recent paper has shown that for 
BTSP, these traces likely depend only on presynaptic activity and the magnitude of the existing 
synaptic efficacy, and that change in synaptic efficacies can depend on the overlap between these 
traces and an instructive signal that is activated by the plateau potential3. The data therefore 
supports a two-factor model in which the two factors are presynaptic activity and an instructive 
signal. 

The model for BTSP we present and analyze here extends these previous results. We show that the 
place fields produced by a two-factor eligibility trace model have fixed points, and that these fixed 
points can be defined and calculated. Our model additionally predicts the convergence rate to these 
fixed points. In some simple cases these fixed points can be fully solved analytically. Using these 
solutions, we show how these fixed points depend on the system's parameters such as the shape of 
the presynaptic place fields and the animal's velocity.  We show explicitly that the place fields 
become broader if the animal has a higher velocity during induction, and predict that LTD far away 
from the instructive signal has a slow convergence time to the fixed point. These results agree with, 
and extend upon, existing experiments on BTSP1-3 and are achieved by a simple and analytically 
tractable mathematical model. 

1. Bittner, K. C. et al. Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons.
Nature Neuroscience 18, 1133–1142 (2015).
2. Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S. & Magee, J. C. Behavioral time scale
synaptic plasticity underlies CA1 place fields. Science 357, 1033–1036 (2017).
3. Milstein, A. D. et al. Bidirectional synaptic plasticity rapidly modifies hippocampal representations
independent of correlated activity. http://biorxiv.org/lookup/doi/10.1101/2020.02.04.934182 (2020)
doi:10.1101/2020.02.04.934182.



Normative Decision Asymmetries with Symmetric Priors but Asymmetric Evidence 

Eissa TL1*, Gold JI2+, Josić K3,4+, Kilpatrick ZP1,5+ 

1. Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO, USA
2. Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
3. Department of Mathematics, University of Houston, Houston, TX, USA
4. Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
5. Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA

+ equal contributions
*Corresponding author: Tahra Eissa, Department of Applied Mathematics, University of Colorado
Boulder, Engineering Center, ECOT 225, Boulder, CO, tahra.eissa@colorado.edu

Decision asymmetries can reflect many factors but are typically considered normative only when they result 
from asymmetric priors or values. Previous studies of normative decision asymmetries have focused on 
restricted sets of conditions that have limited our understanding of potential sources of asymmetry. Most 
studies assumed that available evidence is symmetric, and evidence is matched in strength for each 
alternative. Here we examine decisions between two alternatives that are each associated with relatively 
rare, asymmetric evidence (e.g., deciding which of two slot machines gives higher odds of winning by 
watching their outputs). We show that when evidence is asymmetric and sparse, decision asymmetries are 
inevitable. With symmetric priors, these evidence-driven asymmetries can raise a conundrum for normative 
decision-makers, who must reconcile decision asymmetries with an expectation that no asymmetries should 
exist. We examined how 200 human participants handled this conundrum and compared their performance 
to normative and non-normative models. 

We used a ball-drawing task in which balls of one color could be rare. Subjects saw a short string of balls 
drawn with replacement from one of two equally likely jars with known ratios of ball colors and were asked 
which jar was used. Most participants reported choices supported by more extreme (i.e., rarer) evidence 
more often, despite both alternatives being equally probable. This discrepancy was consistent with a 
Bayesian ideal observer that displays similar asymmetries in its decisions. 

Notably, many subjects' asymmetries were enhanced relative to the ideal observer, matching Bayesian 
models that under-weighed the value of rare balls. Model-free results confirmed that deviations from 
optimality correlated with a decreased use of task-relevant information. These results provide quantitative 
and theoretically grounded insights into how humans use rare events to make inferences, relevant to 
predictions in both real-world situations (stock-market crashes) and common laboratory tasks (changes in 
reward contingencies). 

A) Cartoon of task. B) Ideal observer's belief (log-
likelihood ratio, LLR) about the jar in use, given a
sequence of observations. C) Response fractions
across many trials (<10 observations per trial)
compared with symmetric prior. D) Subject and
model low jar response fractions (mean and
bootstrapped confidence interval shown).

This work was funded by CRCNS 
R01MH115557-01. 

mailto:tahra.eissa@colorado.edu


Spike-Constrained Neural Control 

Olivos-Castillo IC1, Schrater P5, 6, Pitkow X2, 3, 4 

1. Department of Computer Science, Rice University
2. Department of Electrical and Computer Engineering, Rice University
3. Department of Neuroscience, Baylor College of Medicine
4. Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine
5. Department of Psychology, University of Minnesota
6. Department of Computer Science, University of Minnesota

Corresponding author: Itzel Coral Olivos-Castillo, Department of Computer Science, Rice University, 
6100 Main St., Houston, Texas, E-mail: itzel.olivos@rice.edu 

Abstract: 

We develop a version of stochastic control that accounts for computational costs in the brain. Motor control 
and reinforcement learning both appeal to the conceptual framework of accumulating evidence about the 
world and selecting actions based on the synthesized information to maximize the total expected reward. 
However, neither of these approaches consider the costs that the brain pays for performing computations 
and representing information. Conversely, past studies identified metabolically efficient ways of coding 
sensory information, but these studies do not consider the consequences for closed-loop control and are 
restricted to feedforward settings and static environments. To help bridge this gap, here we combine 
concepts of efficient coding with control theory to analyze Linear Quadratic Gaussian (LQG) control, a 
well-understood mathematical example of optimal control. 

In LQG control, the environment's dynamics are linear, all sources of noise are Gaussian, and a quadratic 
function dictates task performance. Given these assumptions, an agent that estimates the environment's 
hidden state using a Kalman filter and computes control policies using Bellman's optimality principle is 
optimal. Thus, in this work, we: i) Use the activity of a population of neurons with Poisson-like response 
variability to encode the environment's noisy observations. ii) Use a dynamic Probabilistic Population Code 
to implement a Kalman filter in which linear projections of spiking neural approximate the natural 
parameters of a Gaussian posterior over the environment's state. iii) Introduce a representation cost, defined 
as the total integrated number of spikes that the neural circuit uses to encode observations and inferences. 
iv) Let the agent select actions that minimize state, action, and representation costs.

By solving this problem, we describe how the optimal spike rate varies with properties of the agent, such 
as sensory gain, and properties of the system to be controlled, such as stability, process noise, and 
observation noise. For example, since the task performance increases with precise inferences and the 
inferences' precision is directly proportional to the number of spikes, an agent with fixed sensory gain can 
obtain more utility overall by relinquishing some task performance if doing so saves enough spikes. In the 
case of an agent with active sensing capacity, the strategy to obtain more utility overall consists of allocating 
more spikes in states where making mistakes is highly punished. The latter strategy is often observed in 
behavioral experiments and may provide a prediction for arousal signals reflected in neural activity and 
pupil dilatation. Overall, this work provides a foundation for a new type of bounded rational behavior that 
could be used to explain suboptimal computations in the brain. 
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Head direction (HD) cells can track an animal’s HD in darkness by integrating angular velocity signals, a 
phenomenon called path integration (PI) [1]. The one-dimensional ring attractor has been successful in 
explaining how HD cells achieve PI [2,3,4], and has received strong experimental support in the fly HD 
system [5,6,7]. However it remains unclear how a path-integrating circuit of HD cells could self-organize. 
Previous models required parameter tuning after training [3] or used non-local learning rules [4]. 

We propose a biologically plausible model for the development of the synaptic connections of a ring 
attractor network where the visual input acts as a supervising signal during training. The learning rule used 
is local, and it is motivated from mammalian systems, where pyramidal neurons have been shown to act as 
coincidence detectors to associate inputs arriving at different compartments [8]. Applied to the architecture 
of the fly HD system (Fig. 1), the model learns a connectivity that shows striking similarities to the one 
reported in the fly [6], and achieves gain-1 path integration in darkness, when the visual input is absent, for 
the full range of angular velocities that the fly displays (Fig. 2). The resulting network is a quasi-continuous 
attractor, and it reproduces experiments in which optogenetic stimulation artificially controls the internal 
representation of heading [7], and where the network remaps to integrate with different gains, akin to 
experiments conducted in virtual reality in rodents [9]. 

Overall, our model answers how the well-characterized HD system in the fly could self-organize during 
development, while resolving the age-old question of how to learn continuous attractor networks that 
achieve gain-1 PI. Although tailored to the fly HD system, our model is general and can be used to learn 
path integration in architectures that lack the physical topography of a ring [10]. 

Fig. 1. Drosophila central complex. HR = Head Rotation         Fig. 2. Network achieves gain-1 PI in darkness 
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